An Extension to a Theorem of Jörgens, Calabi, and Pogorelov

نویسندگان

  • L. CAFFARELLI
  • YANYAN LI
چکیده

(1.1) det(D2u) = 1 in Rn must be a quadratic polynomial. For n = 2, a classical solution is either convex or concave; the result holds without the convexity hypothesis. A simpler and more analytical proof, along the lines of affine geometry, of the theorem was later given by Cheng and Yau [9]. The first author extended the result for classical solutions to viscosity solutions [4]. It was proven by Trudinger and Wang in [19] that the only open convex subset of Rn which admits a convex C2 solution of det(D2u) = 1 in with limx→∂ u(x) = ∞ is = Rn . In this paper we give the following extension to the theorem of Jörgens, Calabi, and Pogorelov: Let u be a convex viscosity solution of det(D2u) = 1 outside a bounded subset of

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Aspects of the Global Geometry of Entire Space-like Submanifolds

We prove some Bernstein type theorems for entire space-like submanifolds in pseudo-Euclidean space and as a corollary, we give a new proof of the Calabi-Pogorelov theorem for Monge-Ampère equations.

متن کامل

A Liouville theorem for solutions of the Monge–Ampère equation with periodic data Un théorème de Liouville pour les solutions de l’équation de Monge–Ampère avec données periodiques

A classical result of Jörgens, Calabi and Pogorelov states that any strictly convex smooth function u with det(D2u)= constant in Rn must be a quadratic polynomial. We establish the following extension: any strictly convex smooth function u with det(D2u) being 1-periodic in each variable must be the sum of a quadratic polynomial and a function which is 1-periodic in each variable. Given any posi...

متن کامل

Realisation of special Kähler manifolds as parabolic spheres

We prove that any simply connected special Kähler manifold admits a canonical immersion as a parabolic affine hypersphere. As an application, we associate a parabolic affine hypersphere to any nondegenerate holomorphic function. Also we show that a classical result of Calabi and Pogorelov on parabolic spheres implies Lu’s theorem on complete special Kähler manifolds with a positive definite met...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003